Antiprogestin inhibition of cell cycle progression in T-47D breast cancer cells is accompanied by induction of the cyclin-dependent kinase inhibitor p21.
نویسندگان
چکیده
Progestin antagonists inhibit the proliferation of progesterone receptor-positive cells, including breast cancer cells, by G1 phase-specific actions, but the molecular targets involved are not defined. Reduced phosphorylation of pRB, a substrate for G1 cyclin-dependent kinases (CDKs) in vivo, was apparent after 9 h treatment of T-47D breast cancer cells with the antiprogestins RU 486 or ORG 31710, accompanying changes in S phase fraction. Although the abundance of cyclin D1, Cdk4, and Cdk6 did not decrease cyclin D1-associated kinase activity was reduced by approximately 50% at 9-18 h. Similarly, cyclin E-associated kinase activity decreased by approximately 60% at 12-24 h in the absence of significant changes in the abundance of cyclin E and Cdk2. The CDK inhibitor p21 increased in mRNA and protein abundance and was present at increased levels in cyclin D1 and cyclin E complexes at times when their kinase activity was decreased. Increased p21 protein abundance was observed in another antiprogestin-sensitive cell line, BT 474, but not in two breast cancer cell lines insensitive to antiprogestins. These data suggest increased p21 abundance and concurrent inhibition of CDK activity as a mechanism for antiprogestin induction of growth arrest. Antiprogestin effects on proliferation were markedly reduced after ectopic expression of cyclin D1, indicating that inhibition of cyclin D1 function is a critical element in antiprogestin inhibition of proliferation. However, these data also implicate regulation of cyclin E function in antiprogestin regulation of cell cycle progression.
منابع مشابه
Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519
An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...
متن کاملInhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519
An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...
متن کاملThe Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy
The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کاملNuclear factor kappaB subunits induce epithelial cell growth arrest.
Nuclear factor kappaB (NF-kappaB) gene-regulatory proteins play important roles in inflammation, neoplasia, and programmed cell death. Recently, blockade of NF-kappaB function has been shown to result in epithelial hyperplasia, suggesting a potential role for NF-kappaB in negative growth regulation. We expressed active NF-kappaB subunits in normal epithelial cells and found that NF-kappaB profo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 11 1 شماره
صفحات -
تاریخ انتشار 1997